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Abstract. This paper deals with the determination of the momentum information entropy for the
infinite potential well in dependence on its quantum states and presents an asymptotical formula for
the information entropy in its momentum space. The upper bound of the sum of the position and
momentum information entropies for the stationary states of the potential well is also estimated.

1. Introduction

With the advent of new and precise measurement techniques [1], renewed interest has arisen
concerning the ultimate limitations of measurement imposed by quantum mechanics. An
interesting problem represents the limits placed on the joint measurability of noncommuting
variables bounded by the uncertainty relations. The fact that two noncommuting observables
A andB cannot simultaneously have sharp eigenvalues represents the cornerstone of the
principleof uncertainty in quantum mechanics and can be quantitatively expressed in different
forms, commonly called uncertaintyrelations. A clear distinction has to be made between
the uncertainty principle and its possible expressions in the form of uncertainty relations (see,
e.g. [2]).

In accordance with present understanding the quantum system is described by a complex
function9(x, t), which is linked with the function of the probability density of finding a
particle at positionx at timet by the equationρx(x, t) = |9(x, t)|2. The corresponding Fourier
transform8(x, t) is connected with the probability of finding a particle with momentump at
time t by the equationρp(p, t) = |8(p, t)|2. According to experimental arrangements the
particle can be described by various wavefunctions and therefore with various position and
momentum density functions. It holds that the sharper the density function is for the particle
positionρx(x, t) the steeper the density function is for its momentumρp(p, t). This is to
express it in the form of a relation between the ‘widths’ of position and momentum probability
distributions. Such a relation is usually called as the position–momentum uncertainty relation.
Generally, an uncertainty relation of two noncommuting observables provides an estimate
of the minimum uncertainty (imprecision) expected in the outcome of a measurement of an
observable, given the uncertainty in outcome of a measurement of another one. The uncertainty
in a measurement of a classical as well as quantum mechanical quantity is commonly expressed
by the standard deviation about its mean. The standard deviation is a measure of the scatter
of measured values of a physical quantity. From the mathematical point of view, a measured
quantity represents a random variablex̃, i.e., a mathematical quantity capable of assuming the
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set of valuesx1, x2, . . . , xn with probabilitiesP(xi), P (x2), . . . , P (xn) [11]. Since in classical
physics this probability distribution is assumed to be Gaussian, representing (forn → ∞) a
one-hump symmetrical function, this measure of the scatter appears to be appropriate here. The
mean value of measured classical quantity is generally also the most probable one. Another
situation arises if the probability distribution function consists of two (or more) distant peaks.
Then, although the probability to find the value of the measured quantity is concentrated
in the vicinity of the peaks, the standard deviation depends on thedistancebetween these
peaks. Here, the mean value may not be the most probable value in the measurement and in
some cases it may even be equal to zero. This often holds for probability distributions of the
noncommuting observables. A typical example is the momentum probability density of particle
in an infinite potential well which has forn > 2 two distant peaks (see figure 2). Here it is
not appropriate to express the scatter of the measured values in the form of standard deviation
but to use other measures for it which areindependentof the distance between the peaks.
Therefore, the essential problem, when constructing uncertainty relations, is how to express
quantitatively the uncertainties (imprecisions) of the measured noncommuting observables
with general probability distributions.

2. Entropic uncertainty relations

The standard deviations of two noncommuting observablesA and B were used in the
Heisenberg uncertainty relation (see, e.g. [29,30]) usually written in the form [29]

1A1B > 1
2|〈9|[Â, B̂]|9〉| (1)

where1A and1B represent the square root of the second central moment (standard deviation
or variance) ofA andB, respectively, and [̂A, B̂] is their commutator. We remark that
principally one may use instead of the second central statistical moments higher statistical
moments of noncommuting observables when formulating a Heisenberg-like uncertainty
relation [26].

The vast literature on the Heisenberg uncertainty relation continues to grow and contains
criticisms, notable in the following points [5,14,23].

(i) If one of two noncommuting observablesA or B is in its eigenstate then1A = 0 or
1B = 0 and so the left-hand side of (1) is also equal to zero although the right-hand side
for these observables is by definition, different from zero.

(ii) If X andP are two noncommuting observables with continuous probability densities, then
their standard deviations may not represent the appropriate measure for the uncertainty
of these observables, especially if their probability densities exhibit several sharp distant
peaks [9].

(iii) For some quantum systems the standard deviations of the noncommuting observables
lead to an uncertainty relation in which the standard deviation of one of the observables
is independentof the standard deviation of the complementary observable [5, 14]. Such
an uncertainty relation does not fulfil the demand put on any form of uncertainty relation.

The standard deviations of the position and momentum were used by Heisenberg in
1927 in his famous uncertainty relation (Unscḧarferelation) [25]. At that time the standard
deviation represented the generally accepted measure of the imprecision of a measurement.
Since its appearance, the Heisenberg uncertainty relation has been the subject of hundreds
of papers in which the standard deviations and the corresponding uncertainty relations of
various noncommuting observables were determined. Meanwhile, however, new scientific
disciplines have arisen which give new possibilities to express the uncertainty of a measured
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classical as well as quantum mechanical quantity. Inspired by the Boltzmann–Gibbs entropy
Shannon has published fundamental work on the communication theory [27] in which he
introduced the most important entropic measure of uncertainty of a random variable, namely
the information entropy. In the last few decades, many authors have shown that the uncertainty
relations, in which the entropic measures of uncertainty are used instead of the moment, do
not suffer from the shortcomings mentioned above [5, 23, 26]. The uncertainty relations where
the information entropies for the uncertainty of noncommuting observables are employed are
called theentropic uncertainty relations. Principally, other entropic measures may be used
when formulating ‘entropic’ uncertainty relations of the noncommuting observables. The
simplest one appears to be the so-called information ‘energy’ defined as [12,26]

H(e)(x̃) =
n∑
i=1

P 2
i .

This entropic measure of uncertainty, similar to information entropy, also gives the degree of
the spreading of the probability distribution of observables. However, the information entropy
has an exceptional position between the entropic measures of uncertainty. Aside from its
meaning as an uncertainty measure of an observable, the information entropy enables one to
determine the amount of information obtained from a certain measurement. One only needs
to know the information entropy of an observable before and after its measurement. The
difference of these two information entropies yields the amount of information gained in the
measurement [31].

In the mathematical formulation of the entropic uncertainty relation, we consider the state
vector|9〉 inN -dimensional Hilbert space and two noncommuting observablesAandB having
nondegenerate spectra of their eigenvectors|ai〉 and|bj 〉. The entropic uncertainty relation is
an inequality of the form [17]

S(A) + S(B) > SAB
where

S(A) = −
∑
i

|〈ψ |ai〉|2 ln |〈ψ |ai〉|2

and

S(B) = −
∑
j

|〈ψ |bj 〉|2 ln |〈ψ |bj 〉|2

is the information entropy of the observableA andB, respectively.SAB is a positive constant
which represents the lower bound of the sum of information entropiesSA andSB [23]. For
the continuous observablesXc andPc, described by the wavefunctionsψ(x) andϕ(p), the
entropic uncertainty relation reads [5,17]

S(Xc) + S(Pc) > SXP
where

S(Xc) = −
∫ ∞
−∞
|ψ(q)|2 ln |ψ(q)|2 dq

and

S(Pc) = −
∫ ∞
−∞
|ϕ(p)|2 ln |ϕ(p)|2 dp.

represents the differential entropy ofXc andPc, respectively. SXP is the lower bound of
the sum of these information entropies. Białynicki-Birula and Mycielski [17], Maassen and
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Uffink [22], Sánchez-Ruiz [23] have shown that nontrivial lower bounds forSAB andSXP exist
for any two observables with no common eigenstates.

Accordingly, the entropic uncertainty relation for the position and momentum of a quantum
system described by its normalized functionψ(x) has the form [17]

Sx + Sp > Sxp
whereSx andSp are the information entropies of its position and momentum

Sx = −
∫ ∞
−∞
|ψ(x)|2 log |ψ(x)|2 dx (2)

and

Sp = −
∫ ∞
−∞
|ϕ̂(p)|2 log |ϕ̂(p)|2 dp (3)

respectively, wherêϕ(p) is the Fourier transform of the wavefunctionψ(x). Spx represent the
lower bound of the sum of position and momentum information entropies. Białynicki-Birula
and Mycielski [17] and Maassen and Uffink [22] found that the lower nontrivial bound for the
sum of position and momentum entropies exists and is given as(h̄ = 1)

Sx + Sp > 1 + lnπ.

Recently, there has been considerable interest in finding the dependencies ofSx(n), Sp(n) and
Sxp(n) on the quantum states of a quantum system [4,18–21]. Since the limits of measurability
placed on the position and momentum of a particle depends on the concrete quantum system
it is necessary to further investigate these limits for each system and its quantum states. We
address the question: what are the valuesSp(n) andSxp(n) for the set of stationary states of
an infinite potential well? There is a specific motivation for the study of this system since a
one-dimensional box of lengtha and infinitely high potential walls often served as a model
system for the analysis of different types of uncertainty relation [24]. Whereas the position
and momentum measurability limits of the harmonic oscillator, in the form of their entropies
and standard deviations, have been already determined as a function of its quantum states (see,
e.g. [4] and references therein) the corresponding limits for the infinite potential well [5,8] are
only partly known. The aim of this paper is the determination of the momentum information
entropy and the corresponding entropic uncertainty relation of an infinite potential well as a
function of its quantum states. We succeed in determining the asymptotical value of momentum
information entropy of the infinite well forn→∞ and found theupperbound of information
entropy in its momentum space.

3. The infinite potential well

We recall that the infinite potential well is a quantum system defined as (¯h = 1) [6]:

U(x) =
{

0 for |x| 6 a
+∞ for |x| > a

(4)

whereU(x) is the potential. Its wavefunctions, the energy eigenvalues and the momentum
wavefunctions are

ψn(x) =


1√
a

sin
[πn

2a
(x − a)

]
for |x| 6 a

0 for |x| > a

(5)

En = n2π2

8ma2
n = 1, 2, 3, . . . (6)
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un(p) =
√
πn2

2a3

sin(ap − π
2n)(

p2 − π2n2

4a2

) exp(iαn) (7)

respectively.
The position and momentum standard deviations,1x and1p, and the Heisenberg relations

of uncertainty for this quantum system as functions of its widtha and quantum numbernwere
determined by Peslak [7]:

1x(a, n) = a√
3

√
1− 6

π2n2
(8)

and

4p(a, n) = πn

2a
. (9)

The position momentum uncertainty product is

4x(n, a)4p(n, a) = 1

2
√

3

√
π2n2 − 6. (10)

A striking property of this uncertainty relation is that its right-hand sidedoes not dependon
widtha. The lower and upper bound of the uncertainty product,1x1p, of the infinite potential
well ranges between a value of 0.5678 and infinity. Equation (9) shows that the momentum
standard deviation increases linearly withn. This is why there are two sharp peaks in the
momentum probability density function,|un(p)|2, for n > 2, whose distance increases with
the quantum numbern. Since momentum standard deviation strongly depends on the distance
between both peaks, its standard deviation increases linearly withn, although the probability
density of finding the momentum of a particle in the well is concentrated mainly in the vicinity
of these peaks.

4. The asymptotical behaviour ofSp(a, n) andSpx(a, n)

In order to determine the position–momentum entropic uncertainty relations for the infinite
potential well we need to evaluate the corresponding integrals (2) and (3). Inserting the position
wavefunctionsψn into equation (2) we get the dependence of the position information entropy
of the infinite potential well on its widtha and quantum numbern. These integrals were
analytically calculated for the whole range ofa andn by Śanchez-Ruiz [8] who obtained the
following simple result:

Sx(n, a) = ln(4a)− 1. (11)

It is remarkable thatSx(a, n) does not dependon the quantum numbern. Inserting the
momentum wavefunctionsun(p) into (3) we obtain the corresponding momentum information
entropy

Sp(a, n) = −
∫ ∞
−∞

πn2

2a3

sin2(ap − π
2n)(

p2 − π2n2

4a2

)2 ln

πn2

2a3

sin2(ap − π
2n)(

p2 − π2n2

4a2

)2

 dp. (12)

The analytical calculation of the momentum information entropy represents a considerably
more difficult problem than that of the position information entropy. Therefore, we shall next
try to estimate it using certain mathematical properties ofSp(n, a) and making some plausible
assumptions onSp(a, n) which we then verify by means of numerical calculations [3].



2212 V Majerńık et al

Using the substitutionap = t , the integral (12) turns out to be

Sp(n) = − ln(4a)− ln
(π

8

)
− π

2

∫ ∞
−∞

n2 sin2(t − π
2n)(

t2 − π2n2

4

)2 ln

n2 sin2(t − π
2n)(

t2 − π2n2

4

)2

 dt. (13)

Taking into account equation (11), we have

Sp(n) = − ln 4a + 1 +f (n)− 1= −Sx(n, a) + f (n)− 1 (14)

where

f (n) = ln

(
8

π

)
− π

2

∫ ∞
−∞

n2 sin2(t − π
2n)(

t2 − π2n2

4

)2 ln

n2 sin2(t − π
2n)(

t2 − π2n2

4

)2

 dt. (15)

Substitution of (15) into (14) gives

[Sx(a, n) + Sp(a, n)] = f (n)− 1

= ln

(
8

π

)
− π

2

∫ ∞
−∞

n2 sin2(t − π
2n)(

t2 − π2n2

4

)2 ln

n2 sin2(t − π
2n)(

t2 − π2n2

4

)2

 dt − 1. (16)

Since the integrand in equation (16) is an even function, the integral in it, after the substitution
t − πn/2= r, obtains the following form

f (n) = ln

(
8

π

)
− π

∫ ∞
−πn/2

n2 sin2 r

(r2 + πnr)2
ln

[
n2 sin2 r

(r2 + πnr)2

]
dr. (17)

In order to find the asymptotical value off (n) we implicitly assume that then → ∞ limit
of integral in equation (17) coincides with the integral of then → ∞ limit of the integrand.
The validity of this procedure is then confirmed by the numerical calculations. We realize
that the interchange of the order of the operations ‘limit’ and ‘integration’ needs a rigorous
mathematical proof. However, to bring this proof, which is also interesting for determining
asymptotical values of other information entropies, we require further study which would
exceed the scope of this paper. It will be the subject of a subsequent paper.

Let us consider an arbitraryfinite real numberr for which it holds

lim
n→∞ n

2 sin2 r

(r2 + πnr)2
= sin2 r

π2r2
lim
n→∞−πn/2= −∞ < r.

If n→∞, the integrand in equation (19) becomes the following function:

sin2 r

π2r2
ln

sin2 r

π2r2
.

Therefore,

lim
n→∞ f (n) = ln

(
8

π

)
− 1

π

∫ ∞
−∞

sin2 r

r2
ln

sin2 r

π2r2
dr.

Taking into account that∫ ∞
−∞

sin2 r

r2
dr = π

we find

lim
n→∞ f (n) = ln(8π)− 1

π

∫ ∞
−∞

sin2 r

r2
ln

sin2 r

r2
dr
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Figure 1. The momentum information entropy of the infinite potential well as a function of its
quantum states. The horizontal line in the bottom figure represents the estimated upper bound.

and

lim
n→∞ Sp(n) = − ln 4a + ln 8π − 1

π

∫ ∞
−∞

sin2 r

r2
ln

sin2 r

r2
dr. (18)

The exact analytical value of the integral in (18) has been found in a very recent work by
Sánchez-Ruiz [10], who was able to prove that∫ ∞

0

sin2 r

r2
ln

sin2 r

r2
dr = −π(1− γ ) (19)

whereγ is Euler’s constant. The value of the integral in (18) is

% = −
∫ ∞
−∞

sin2 r

r2
ln

sin2 r

r2
dr = 2π(1− γ ) ≈ 2.6564.
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Figure 2. The position probability density (a) and momentum probability density (b) for the
symmetric wavefunctions of the infinite potential well corresponding ton = 1, 5, 10.

Accordingly, we obtain for the asymptotical value ofSp(a, n)

lim
n→∞ Sp(a, n) = − ln 4a + ln 8π +

%

π
= − ln 4a + lim

n→∞ f (n).

Hence, the asymptotical value of the sum of position and momentum entropiesSxp is

lim
n→∞[Sx(n) + Sp(n)] = lim

n→∞ f (n)− 1= ln 8π +
%

π
− 1≈ 3.0697.

This value represents the estimated upper bound ofSxp(a, n). The value ofSxp(a, n) ranges
between a value of 2.212 and a value of 3.0697. How close the momentum information entropy
as a function of the increasing quantum numbern approaches to the estimated upper bound is
shown in figure 1 (bottom).

In contrast to the corresponding Heisenberg uncertainty relation the upper bound of
momentum information entropy forn→∞ is a finite number. If one takes for the uncertainties
of position and momentum their standard deviations, one has, forn→∞, 1x ≈ a/√3 and
1p ≈ ∞ which means that in this case the momentum is completely uncertain,independent
of a. This indicates that it is not possible to derive from the Heisenberg uncertainty relation
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the central claim of uncertainty principle, namely, the impossibility of an arbitrarily sharp
specification of both position and momentum. In contrast to thisSp(a, n) is for n→∞ finite
and depends on the width of wella.

5. Concluding remarks

There is still active discussion of joint measurement of two canonically conjugate observables
and the physical interpretation of the uncertainty principle in quantum physics [28]. Whilst
some authors believe these observables cannot be measured simultaneously, others believe that
they can be measured simultaneously with unlimited accuracy. The standard view is that the
measurement is possible but that the uncertainty relation limits its accuracy [15,16]. Recently,
a new formulation of uncertainty relation, based on the operational probability distributions
of noncommuting observables have been proposed by Bužek et al [13]. This operational
uncertainty relation explicitly takes into account the action of a measurement device, which
due to internal classical or quantum noise, may enlarge the total uncertainty of a measured
observable.

An interesting feature of the infinite potential well is that its standard deviation and
information entropy in the momentum space of its quantum states exhibit considerably different
behaviour. Whereas the momentum information entropy only slightly increases forn > 2,
the momentum standard deviation increases almost linearly proportional ton. This is why the
momentum probability distribution of the infinite well has two distant peaks in the vicinity of
which the momentum probability density is mainly concentrated (see figure 2). The areas of
the concentrated momentum probability density are practically independent ofn, therefore its
information entropy is almost independent onn whereas the standard deviation, in which the
distance between these areas explicitly occurs, increases approximately linearly withn [9]. Due
to this fact the standard and entropic uncertainty relations of the infinite well also considerably
differ for n > 2. This shows that the use of momentum information entropy here corresponds
more to the demands put on the measure for uncertainty of an observable than the standard
deviation.
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